Greatest prime divisors of polynomial values over function fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistics of Prime Divisors in Function Fields

ROBERT C. RHOADES Abstra t. We show that the prime divisors of a random polynomial in Fq[t] are typi ally Poisson Distributed . This result is analogous to the result in Z of Granville [1℄. Along the way, we use a sieve developed by Granville and Soundararajan [2℄ to give a simple proof of the Erdös-Ka theorem in the fun tion eld setting. This approa h gives stronger results about the moments o...

متن کامل

Polynomial Division and Greatest Common Divisors

It is easy to see that there is at most one pair of polynomials (q(x), r(x)) satisfying (1); for if (q1(x), r1(x)) and (q2(x), r2(x)) both satisfy the relation with respect to the same polynomial u(x) and v(x), then q1(x)v(x)+r1(x) = q2(x)v(x)+r2(x), so (q1(x)− q2(x))v(x) = r2(x)−r1(x). Now if q1(x)− q2(x) is nonzero, we have deg((q1 − q2) · v) = deg(q1 − q2)+deg(v) ≥ deg(v) > deg(r2 − r1), a c...

متن کامل

Primitive Prime Divisors in Polynomial Arithmetic Dynamics

The question of which terms of a recurrence sequence fail to have primitive prime divisors has been significantly studied for several classes of linear recurrence sequences and for elliptic divisibility sequences. In this paper, we consider the question for sequences generated by the iteration of a polynomial. For two classes of polynomials f(x) ∈ Z[x] and initial values a1 ∈ Z, we show that th...

متن کامل

Towers of Function Fields over Non-prime Finite Fields

Over all non-prime finite fields, we construct some recursive towers of function fields with many rational places. Thus we obtain a substantial improvement on all known lower bounds for Ihara’s quantity A(`), for ` = p with p prime and n > 3 odd. A modular interpretation of the towers is given as well.

متن کامل

Common Divisors of Elliptic Divisibility Sequences over Function Fields

Let E/k(T ) be an elliptic curve defined over a rational function field of characteristic zero. Fix a Weierstrass equation for E. For points R ∈ E(k(T )), write xR = AR/D2 R with relatively prime polynomials AR(T ), DR(T ) ∈ k[T ]. The sequence {DnR}n≥1 is called the elliptic divisibility sequence of R. Let P, Q ∈ E(k(T )) be independent points. We conjecture that deg ( gcd(DnP , DmQ) ) is boun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2014

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa165-4-4